Welcome to Hirschberger lab
ようこそ   ヒルシュベルガー研究室へ

Experimental Condensed Matter Physics and Materials Science

(Visualization by M. Ishida of RIKEN CEMS)
© 2021 RIKEN Center for Emergent Matter Science


We are interested in the effects of Berry curvature on physical properties of solids. Recently, we study the interplay between non-coplanar spin arrangements such as magnetic skyrmions, and the electronic band structure. Our toolbox includes

  • Material search, e.g. by symmetry principles or density functional theory calculations
  • Crystal synthesis and characterization
  • Ultra-high resolution electrical and thermal transport measurements
  • Extreme conditions: high DC and pulsed magnetic fields at user facilities in Japan, Europe, and the USA
  • Extreme conditions: low temperature experiments below 300 milli-Kelvin
  • Collaborations on quantum-beam scattering experiments (neutron and x-ray)

Current research topics

Amongst other directions, we are offering projects on the following issues to interested students and post-doctoral researchers:

  1. Search for materials where spin chirality combines with topologically protected features in the electronic structure, such as Weyl points or flat bands

  2. Development of ultra-low temperature setup for measurements of the thermal Hall effect in frustrated magnetic materials

  3. Thermoelectric properties of magnetic oxides, and application to energy harvesting

  4. Search for novel spin textures, such as merons and topological knots, in intermetallics

Contact us to learn more!

Current members

Hirschberger-lab's group picture in May 2022

Max Hirschberger
Associate Professor
Ext. 26835

Dr. Rinsuke Yamada
Assistant Professor
Website: researchmap
Ext. 26829

Dr. Sebastian Esser
JSPS International Research Fellow
(Alexander-von-Humboldt program)

Ext. 26829

Shun Akatsuka
Master Course
M2 Student

Daiki Yamaguchi
B4 student

Ryota Nakano
B4 student

Dr. Nguyen Khanh
Research Scientist
* email addresses are combined with the extension @ap.t.u-tokyo.ac.jp, unless noted otherwise.

Alumni / Former members

Leonie Spitz
Master Course
Now: Doctor Course,
PSI Switzerland

Teaching and Lecture courses

Autumn 2022 (A1): "Solid State Physics IV: Magnetism", The University of Tokyo, Dept. of Applied Physics
Office hours: Fridays, 14:00 ~ 15:00, Room 328, Building 6
Note: lecture notes are password-protected (password announced in lecture)

Lecture 01: Introduction

Lecture 02: Magnetic moment, magnetization, density matrix

Lecture 03: Fluctuation-dissipation theorem

Lecture 04: Susceptibility, spin, time-reversal symmetry in QM

Lecture 05: The magnetic Hamiltonian

Lecture 06: Crystal electric fields, direct exchange interaction

Lecture 07: Direct exchange (ctd.), Superexchange

Lecture 08: Double exchange, Dzyaloshinskii-Moriya interaction

Lecture 09: Magnetic susceptibility of noninteracting systems: Dia- and paramagnets

Lecture 10: Magnetic susceptibility of metals

Lecture 11: Ferro- and antiferromagnets, spiral magnetism, etc.

Lecture 12: Topology in magnetism: topological defects, skyrmions

Problem set 1

Problem set 2

Spring 2022: "Engineering Laboratory Techniques", The University of Tokyo, Dept. of Applied Physics
Two lectures (物理工学実験技法B)

Fall 2021: "Solid State Physics IV: Quantum mechanics and topology", The University of Tokyo, Dept. of Applied Physics
In collaboration with K. Usami

Fall 2020: "Solid State Physics IV: Quantum mechanics and topology", The University of Tokyo, Dept. of Applied Physics
In collaboration with K. Usami

Publication List (chronological)


  1. Kagome lattice promotes chiral spin fluctuations.
    Accepted to Physical Review Letters (2023); Preprint: arXiv:2206.05756
    Kolincio K., Hirschberger M., Masell J., Arima T.-h., Nagaosa N., and Tokura Y.
  2. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl3.
    Nature Materials 22, 36–41 (2023) - click!
    Czajka P., Gao T., Hirschberger M., Lampen-Kelley P., Banerjee A., Quirk N., Mandrus D.G., Nagler S.E., and Ong N.P.
  3. 2022

  4. Polarized neutron scattering study on the centrosymmetric skyrmion host material Gd2PdSi3.
    Physical Review B 107, 024405 (2022); Preprint: arXiv:2208.08188
    Ju J., Saito H., Kurumaji T., Hirschberger M., Kikkawa A., Taguchi Y., Arima T.-h., Tokura Y., and Nakajima T.
  5. Topological Nernst effect emerging from real-space gauge field and thermal fluctuations in a magnetic skyrmion lattice
    Physical Review B 106, 214425 (2022)
    Oike H., Ebino T., Koretsune T., Kikkawa A., Hirschberger M., Taguchi Y., Tokura Y., and Kagawa F.
  6. Entropy-assisted, long-period stacking of honeycomb layers in an AlB2-type silicide.
    Journal of the American Chemical Society 144, 37, 16866–16871 (2022) - click!
    Spitz L., Nomoto T., Kitou S., Nakao H., Kikkawa A., Francoual S., Taguchi Y., Arita R., Tokura Y., Arima T.-h., and Hirschberger M.
  7. 2021

  8. News & Views on Quantum Materials: Weyl fermions promote collective magnetism.
    Nature Materials 20, 1592 (2021) - click!
    Hirschberger M. and Tokura Y.
  9. Large Hall and Nernst responses from thermally induced spin chirality in a spin-trimer ferromagnet.
    Proceedings of the National Academy of Sciences 118, e2023588118 (2021) - click!
    Kolincio K.K., Hirschberger M., Masell J., Gao S., Kikkawa A., Taguchi Y., Arima T.-h., Nagaosa N., and Tokura Y.
  10. Oscillations of the thermal conductivity observed in the spin-liquid state of α-RuCl3.
    Nature Physics 17, 915–919 (2021)
    Czajka P., Gao T., Hirschberger M., Lampen-Kelley P., Banerjee A., Yan J., Mandrus D.G., Nagler S.E., and Ong N.P.
  11. Robust noncoplanar magnetism in band filling-tuned (Nd1−xCax)2Mo2O7.
    Physical Review B 104, 024436 (2021)
    Hirschberger M., Kaneko Y., Spitz L., Nakajima T., Taguchi Y., and Tokura Y.
  12. Geometrical Hall effect and momentum-space Berry curvature from spin-reversed band pairs.
    Physical Review B (Letter) 103, L041111 (2021)
    Hirschberger M., Nomura, Y., Mitamura H., Miyake A., Koretsune T., Kaneko Y., Spitz L., Taguchi Y., Matsuo A., Kindo K., Arita R., Tokunaga M., and Tokura Y.
  13. Nanometric skyrmion lattice from anisotropic exchange interactions in a centrosymmetric host.
    New Journal of Physics 23, 023039 (2021)
    Hirschberger M., Hayami S. and Tokura Y.
  14. 2020

  15. Emergent electromagnetic induction in a helical-spin magnet.
    Nature 586, 232–236 (2020)
    Yokouchi T., Kagawa F., Hirschberger M., Otani Y., Nagaosa N., and Tokura Y.
  16. Topological Nernst effect of the two-dimensional skyrmion lattice.
    Physical Review Letters 125, 076602 (2020)
    Hirschberger M., Spitz L., Nomoto T., Kurumaji T., Gao S., Masell J., Nakajima T. Kikkawa A., Yamasaki Y., Sagayma H., Nakao H., Taguchi Y., Arita R., Arima T.-h., and Tokura Y.
  17. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet.
    Nature Nanotechnology 15, 444–449 (2020)
    Khanh N. D., Nakajima T., Yu X. Z., Gao S., Shibata K., Hirschberger M., Yamasaki Y., Sagayama H., Nakao H., Peng L. C., Nakajima K., Takagi R., Arima T., Tokura Y., and Seki S.
  18. High-field depinned phase and planar Hall effect in skyrmion-host Gd2PdSi3.
    Physical Review B (Rapid) 101, 220401(R) (2020)
    Hirschberger M., Nakajima T., Kriener M., Kurumaji T., Spitz L., Gao S., Kikkawa A., Yamasaki Y., Sagayama H., Nakao H., Ohira-Kawamura S., Taguchi Y., Arima T.-h., and Tokura Y.
  19. 2019

  20. Skyrmion phase and competing magnetic orders on a breathing kagome lattice.
    Nature Communications 10, 5831 (2019)
    Hirschberger M.*, Nakajima T.*, Gao S., Peng L., Kikkawa A., Kurumaji T., Kriener M., Yamasaki Y., Sagayama H., Nakao H., Ohishi K., Kakurai K., Taguchi Y., Yu X., Arima T., and Tokura Y.
  21. Ordering phenomena of spin trimers accompanied by large geometrical Hall effect.
    Physical Review B (Rapid) 100, 241115(R) (2019)
    Gao S.*, Hirschberger M.*, Zaharko O., Nakajima T., Kurumaji T., Kikkawa A., Shiogai J., Tsukazaki A., Kimura S., Awaji S., Taguchi Y., Arima T.-h., and Tokura Y.
  22. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet.
    Science 365, 914-918 (2019)
    Kurumaji T.*, Nakajima T.*, Hirschberger M., Kikkawa A., Yamasaki Y., Sagayama H., Nakao H., Taguchi Y., Arima T., and Tokura Y.
  23. Ultra-small moment incommensurate spin density wave order masking a ferromagnetic quantum critical point in NbFe2.
    Physical Review Letters 123, 247203 (2019)
    Niklowitz P.G., Hirschberger M., Lucas M., Cermak P., Schneidewind A., Faulhaber E., Mignot J.-M., Duncan W.J., Neubauer A., Pfleiderer C., and Grosche F.M.
  24. A gap-protected zero-Hall effect state in the quantum limit of the non-symmorphic metal KHgSb.
    Nature Materials 18, 443 (2019)
    Liang S., Kushwaha S., Gao T., Hirschberger M., Li J., Wang Z., Stolze K., Skinner B., Bernevig B.A., Cava R.J., and Ong N.P.
  25. Enhanced thermal Hall conductivity below 1 Kelvin in the pyrochlore magnet Yb2Ti2O7.
    arXiv:1903.00595 (2019)
    Hirschberger M., Czajka P., Koohpayeh S.M., Wang W., and Ong N.P.
  26. 2018

  27. Quantum tricritical points in NbFe2
    Nature Physics 14, 62 (2018)
    Friedemann S., Duncan W.J., Hirschberger M., Bauer T.W., Kuechler R., Neubauer A., Brando M., Pfleiderer C., and Grosche F.M.
  28. 2017

  29. The Chiral Anomaly Factory: Creating Weyls with a Magnetic Field.
    Physical Review B 95, 161306 (2017)
    Cano J., Bradlyn B., Wang Z., Hirschberger M., Ong N.P., and Bernevig B.A.
  30. Crystal growth and stoichiometry-dependent properties of the ferromagnetic Weyl semimetal ZrCo2−xSn.
    Journal of Physics: Condensed Matter 29, 225702 (2017)
    Kushwaha S.K., Stolze K., Wang Z., Hirschberger M., Lin J., Bernevig B.A., Ong N.P., and Cava R.J.
  31. 2016

  32. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi.
    Nature Materials 15, 1161–1165 (2016)
    Hirschberger M., Kushwaha S., Wang Z., Gibson Q., Liang S., Belvin C.A., Bernevig B.A., Cava R.J., and Ong N.P.
  33. Diamagnetic response in under-doped YBa2Cu3O6.6 in high magnetic fields.
    Proceedings of the National Academy of Sciences 113, 12667 (2016)
    Yu F., Hirschberger M., Loew T., Li G., Lawson B.J., Asaba T., Kemper J.B., Liang T., Porras J., Boebinger G.S., Singleton J., Keimer B., Li L., and Ong N.P.
  34. Time-reversal breaking Weyl fermions in magnetic Heuslers.
    Physical Review Letters 117, 236401 (2016)
    Wang Z., Vergniory M.G., Kushwaha S., Hirschberger M., Chulkov E.V., Ernst A., Ong N.P., Cava R.J., and Bernevig B.A.
  35. Anomalous Nernst Effect in the Dirac Semimetal Cd3As2
    Physical Review Letters 118, 136601 (2016)
    Liang T., Lin J., Gibson Q., Gao T., Hirschberger M., Liu M., Cava R.J., and Ong N.P.
  36. 2015

  37. Large thermal Hall conductivity of neutral spin excitations in a frustrated quantum magnet.
    Science 348, 106-109 (2015)
    Hirschberger M., Krizan J.W., Cava R.J., and Ong N.P.
  38. Thermal Hall Effect of Spin Excitations in a Kagome Magnet.
    Physical Review Letters 115, 106603 (2015)
    Hirschberger M., Chisnell R., Lee Y.S., and Ong N.P.
  39. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi.
    Science 350, 413-416 (2015)
    Xiong J., Kushwaha S.K., Liang T., Krizan J.W., Hirschberger M., Wang W., Cava R.J., and Ong N.P.
  40. Three-dimensional Dirac semimetals: Design principles and predictions of new materials.
    Physical Review B 91, 205128 (2015)
    Gibson Q.D., Schoop L.M., Muechler L., Xie L.S., Hirschberger M., Ong N.P., Car R., and Cava R.J.
  41. Correlation of crystal quality and extreme magnetoresistance of WTe2.
    Europhysics Letters 110, 67002 (2015)
    Ali M.N., Schoop L.M., Xiong J., Flynn S., Gibson Q.D., Hirschberger M., Ong N.P., and Cava R.J.
  42. Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of Z2 topology for the superconductor.
    Physical Review B 91, 214517 (2015)
    Schoop L.M., Xie L.S., Chen R.S., Gibson Q.D., Lapidus S.H., Kimchi I., Hirschberger M., Haldolaarachchige N., Ali M.N., Belvin C.A., Liang T., Neaton J.B., Ong N.P., Vishwanath A., and Cava R.J.
  43. Spin dynamics and spin freezing at ferromagnetic quantum phase transitions.
    The European Physical Journal Special Topics 224, 1041-1060 (2015)
    Schmakat P., Wagner M., Ritz R., Bauer A., Brando M., Deppe M., Duncan W., Duvinage C., Franz C., Geibel C., Grosche F.M., Hirschberger M., Hradil K., Meven M., Neubauer A., Schulz M., Senyshyn A., Süllow S., Pedersen B., Böni P., and Pfleiderer C.
  44. 2014

  45. Large, non-saturating magnetoresistance in WTe2.
    Nature 514, 205-208 (2014)
    Ali M.N., Xiong J., Flynn S., Tao J., Gibson Q.D., Schoop L.M., Liang T., Haldolaarachchige N., Hirschberger M., Ong N.P., and Cava R.J.
  46. Paramagnetic to ferromagnetic phase transition in lightly Fe-doped Cr2B.
    Physical Review B 89, 224417 (2014)
    Schoop L.M., Hirschberger M., Tao J., Felser C., Ong N.P., and Cava R.J.
  47. 2013

  48. Evidence for massive bulk Dirac fermions in Pb1−xSnxSe from Nernst and thermopower experiments.
    Nature Communications 4, 2696 (2013)
    Liang T., Gibson Q.D., Xiong J., Hirschberger M., Koduvayur S.P., Cava R.J., and Ong N.P.
  49. 2012

  50. Ferrimagnetism in Fe-rich NbFe2.
    Physical Review B 85, 115137 (2012)
    Haynes T.D., Maskery I., Butchers M.W., Duffy J.A., Taylor J.W., Giblin S.R., Utfeld C., Laverock J., Dugdale S.B., Sakurai Y., Itou M., Pfleiderer C., Hirschberger M., Neubauer A., Duncan W., and Grosche F.M.

Supported by

Government Organizations

Japan Science and Technology Agency (JST)
FOREST (Fusion-oriented research for disruptive Science and Technology) (創発的研究支援事業)

Japanese Society for the Promotion of Science
New Academic Field Research Grant (新学術領域研究)

Japanese Society for the Promotion of Science
Grant-in-Aid for Young Researchers (科研若手)

Private Foundations

Murata Foundation
Research Grant (研究助成)

Yamada Foundation
Research Grant (2022年度 研究援助)

Hattori Hokokai Foundation
Engineering Research Grant (工学研究奨励援助金)

Kenjiro Takayanagi Foundation
Research Encouragement Award (研究奨励賞)

Inamori Foundation
Research Grant (研究助成)

Casio Foundation
Basic Research Grant (研究助成・基本テーマ)

Mazda Foundation
Science and Technology Promotion Grant (第38回 2022年度 科学技術振興関係)

Fujimori Science and Technology Promotion Foundation
2022年度 研究助成

Iketani Foundation
One-year Research Grant A (単年度研究助成 A)

Mizuho Foundation
Engineering Research Grant (第65回工学研究助成)

New Information Materials Foundation
Research Grant (令和4 年度 研究助成)

Picture Gallery

Hirschberger-lab in February 2023 (after B4 thesis presentation)

Dr. Yamada and Mr. Nakano (B4) in February 2023 @ Prof. Schoop's lab (Princeton, USA)

Hirschberger-lab in October 2022 (on Mount Mitake)

Hirschberger-lab in December 2022

Hirschberger-lab in September 2022