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5 Berry Phase and Hall Effect

So far:

• Monopoles of emergent magnetic field (Berry curvature).

• Relation of Ωnk to the geometry of parameter space and to the handedness of particle motion (chiral

anomaly).

Our purpose now:

1. To relate experimental observables such as σxy to the Berry curvature Ωnk and emergent vector

potential An(k).

2. To derive the Kubo formula for the Hall conductivity in linear response theory

3. To derive the TKNN formula for the Hall conductivity (limit of T = 0)

σxy =
e2

h

∫
BZ

d2k

2π

[
∂kxAny(k)− ∂kyAnx(k)

]
(1)
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where the Berry connection is An(k) = −i ⟨unk| ∇k |unk⟩ with lattice-periodic Bloch states |unk⟩, and

to show its relation to the first Chern number in the case of a 2D insulator:

σxy =
e2

h
ν, ν ∈ Z (2)

Literature: Naoto Nagaosa et al., Rev. Mod. Phys. 82, 1959 (2010)

(End of previous lecture)

5.1 Kubo formula

The goal of the derivation is the TKNN formula; to arrive at this result, we start by deriving Kubo’s formula

for the conductivity tensor.

Consider the effect of the electric field E along the y-direction (!) on a quantum mechanical basis set |n⟩

in first-order quantum-mechanical perturbation theory:

|n⟩E = |n⟩+
∑

m(̸=n)

⟨m| − qEy |n⟩
En − Em

|m⟩ (3)

where −qyE is the potential energy of a charge q in the electric field E. The corresponding current is defined

as the sum over all particles of the product of charge and velocity (a normalization factor L2 is necessary to

make this observable intensive)

⟨jx⟩E =
1

L2

∑
n

fFD(En(k)) ⟨n|E qvx |n⟩E =
1

L2

∑
n

fFD(En(k))×

×

⟨n|+
∑

m(̸=n)

⟨m| − qEy |n⟩
En − Em

⟨m|

 qvx

|n⟩+
∑
l(̸=n)

⟨l| − qEy |n⟩
En − El

|l⟩

 (4)

with fFD the Fermi-Dirac distribution function and En(k) the spectrum of the Hamiltonian. We focus on

terms which are first order in the perturbing electric field so that

⟨jx⟩E = ⟨jx⟩E=0 +
1

L2

∑
n̸=m

fFD(En(k))×

[
⟨n| − qEy |m⟩ ⟨m| qvx |n⟩

En − Em
+

⟨n| qvx |m⟩ ⟨m| − qEy |n⟩
En − Em

]
(5)
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Recall the Heisenberg equation for operators, dÔ/dt = (1/iℏ)[Ô, Ĥ] + ∂Ô/∂t
∣∣∣
Ĥ
. For the velocity operator,

this implies v̂ = ẋ = (1/iℏ)[x̂, Ĥ] so that

⟨m|v |n⟩ = 1

iℏ
⟨m| x̂Ĥ − Ĥx̂ |n⟩ = 1

iℏ
(En − Em) ⟨m| x̂ |n⟩ (6)

For the longitudinal current and the Hall conductivity, this yields

⟨jx⟩E = ⟨jx⟩E=0 −
iℏEq2

L2

∑
n̸=m

[
⟨n| vx |m⟩ ⟨m| vy |n⟩

(En − Em)2
+

⟨n| vy |m⟩ ⟨m| vx |n⟩
−(En − Em)2

]
(7)

σxy =
1

E
[⟨jx⟩E − ⟨jx⟩E=0] = − iℏq

2

L2

∑
n̸=m

[
⟨n| vx |m⟩ ⟨m| vy |n⟩

(En − Em)2
− ⟨n| vy |m⟩ ⟨m| vx |n⟩

(En − Em)2

]
(8)

and this already demonstrates Onsager’s relation for the Hall conductivity, σxy = −σyx.

5.2 Bloch Hamiltonian for band electrons

We specialize to the case of Bloch wavefunctions in a periodic potential

|ψn(k)⟩ = eik·x |unk⟩ (9)

where the |unk(x)⟩ are a basis set of lattice-periodic functions, |unk(x+T)⟩ = |unk(x)⟩ and T =
∑

i niai

with ai enumerating all basis vectors of the lattice, and ni ∈ N. Further, k is the crystal momentum –

defined only up to a reciprocal lattice vector G –, n is the band index and exp(ik · x) is a plane wave.

The effect of the (full) Hamiltonian on these wavefunctions is

Ĥ |ψnk⟩ = Enk |ψnk⟩ (10)

Ĥk |unk⟩ = Enk |unk⟩ (11)

This can be derived from Ĥ = (1/2m) (−iℏ∇)
2
+A0(x), from which it follows

Ĥ |ψnk⟩ =
[
ℏ2

2m
(−i∇)2 +A0(x)

]
eik·x |unk(x)⟩ = eik·x

[
ℏ2

2m
(−i∇+ k)2 +A0(x)

]
|unk(x)⟩ (12)

whereas the term in brackets is Ĥk, i.e., we have Ĥk = (1/2m) (−iℏ∇+ ℏk)2 + A0(x). We can also write

Ĥ |ψnk⟩ = eik·xĤk |unk⟩.
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5.3 TKNN formula for the Hall conductivity

Regarding the velocity operator, it can be expressed as v̂ = (1/iℏ)[x̂, Ĥ] or v̂ = (1/iℏ)[x̂, Ĥk], depending on

whether we are working with the |ψnk⟩ or |unk⟩ basis set. In the latter case, we write explicitly

⟨unk| v̂ |umk⟩ =
1

iℏ
[⟨unk| i∇k (Emk |umk⟩)− ⟨unk|Enki∇k |umk⟩]

=
1

ℏ
∂Enk

∂k
δnm +

1

ℏ
(Emk − Enk)

〈
unk

∣∣∣∣∂unk∂k

〉
(13)

Along these lines and using 1 =
∑

m |m⟩ ⟨m| as well as 0 = ∇k ⟨unk| umk⟩ = ⟨∇kunk| umk⟩+ ⟨unk| ∇kumk⟩

for n ̸= m and n = m, the Hall conductivity is rewritten as

σxy = − iq2

ℏL2

∑
k

∑
n̸=m

fFD(Enk)

[〈
∂unk
∂kx

∣∣∣∣umk

〉〈
umk

∣∣∣∣∂unk∂ky

〉
−

〈
∂unk
∂ky

∣∣∣∣umk

〉〈
umk

∣∣∣∣∂unk∂kx

〉]

= − iq2

ℏL2

∑
k

∑
n

fFD(Enk)

[〈
∂unk
∂kx

∣∣∣∣ ∂unk∂ky

〉
−
〈
∂unk
∂ky

∣∣∣∣ ∂unk∂kx

〉]

= − iq2

ℏL2

∑
k

∑
n

fFD(Enk)

[
∂

∂kx

〈
unk

∣∣∣∣∂unk∂ky

〉
− ∂

∂ky

〈
unk

∣∣∣∣∂unk∂kx

〉]

= − iq2

ℏL2

∑
k

∑
n

fFD(Enk)

[
∂Any(k)

∂kx
− ∂Anx(k)

∂ky

]
(14)

where the Berry connection An(k) = −i ⟨unk| ∇k |unk⟩ was introduced for Bloch states. As the Berry

curvature is Ωn(k) = ∇k ×An(k), this is the same as

σxy =
q2

ℏL2

∑
n

∑
k

fFD(Enk) Ωnz(k)

=
q2

h

∑
n

∫
BZ

d2k

(2π)2
fFD(Enk) Ωnz(k) (15)

where the second equality is for the 2D problem only. For either 2D or 3D, the result means that the Hall

effect in the x-y plane is simply the sum of the Berry curvature’s z-component over all occupied states. The

present version of the TKNN formula is still valid for either an insulator or a metal.

5.4 Hall effect and monopole density in two dimensions

Purpose here: Relationship between the Hall conductivity σxy and monopoles, especially for the case of a

2D insulator.
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Case without monopoles in the 2D BZ

Considering the two-dimensional case, the area integral over the Brillouin zone can be replaced with (Stokes’

theorem) a line integral of An(k) around the whole edge of the BZ:

σxy =
1

2π

q2

h

∑
n

∮
S(BZ)

dlk ·An(k) (16)

where dk is a unit vector parallel to the surface line S(BZ) of the Brillouin zone, along which we are

integrating. Due to periodicity of the lattice, the left and right or top and bottom boundaries of the BZ

must be associated with the same values ofAn, but the integration direction is opposite for each pair of edges.

Hence, the line integral must vanish in the 2D case if there is a single vector potential without singularities

describing the Berry phase effect in the whole BZ : σxy = 0

5.5 Anomalous Hall Effect of a 3D Weyl Semimetal

Reference: A. Burkov, Phys. Rev. Lett. 113, 187202 (2014)

We consider the case of two Weyl fermions with opposite chiralities at positions (0, 0,±kWz ) in the

Brillouin zone (BZ). We set the Fermi energy EF to be at the position of the Weyl points (i.e., the Fermi

surface of the Weyl points is of zero measure). The Berry curvature Ωnk acts as an emergent magnetic field

in momentum space, which points away from / towards the Weyl point(s). We cut the 3D Brillouin zone

into 2D slices at constant kz values. For each slice, the system behaves as an effective 2D insulator, as long

as the slice does not exactly cut through the Weyl point itself.

The TKNN formula for each insulating slice is:

σxy(kz) =
e2

h

∫
d2k

(2π)2
Ωz

n(k), (17)

where Ωz
n is the z-component of the Berry curvature.

1. For −kWz < kz < kWz : the net Berry flux through the 2D slice is finite ⇒ contributes a finite amount

to σxy.
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2. For kz > kWz or kz < −kWz : there is no net flux through the slice, because the emergent magnetic field

Ωnk bends in the shape of a dipole around the boundary of the BZ. Therefore, these slices make no

contribution to the bulk σxy.

Integrating the Hall conductivity over kz gives:

σxy =
e2

h

∆kz
∆kBZ

z

· 1
c
, (18)

where ∆kz, ∆k
BZ
z , and c are the momentum-space separation between the two Weyl nodes, the dimension

of the BZ along the z axis, and the lattice constant along the z-axis, respectively. Note that σxy in 2D has

the same dimension as e2/h, whereas in 3D we have to add c−1 to satisfy the dimensional analysis.

Hence, the anomalous Hall effect depends directly on the distance between Weyl nodes (when properly

taking care of their alignment relative to the kx = ky = 0 line).

5.6 Bulk–Boundary Correspondence: Fermi-Arc Surface States

5.6.1 Laughlin’s Argument for a 2D insulator

Purpose: Discuss a simple case of bulk-boundary correspondence, considering an insulator in two dimensions

(2D).

Take a rectangular plate of a 2D insulator and wrap it into a cylinder so that the y-axis is along the tube

and the x-axis is periodic, with cylinder circumference Lx. We then insert a magnetic field adiabatically slow

into the center of the cylinder and an electric field Ex is created tangentially to the cylinder by Faraday’s

law of induction:

Ex = −Φ̇flux/Lx (19)

where Φflux is the magnetic flux. As our system is an insulator, we have σxx = σyy = 0. However, the Hall

conductivity σxy can be finite, if the insulator is nontrivial, and we here examine the implications of this.

We have

jy = σxyEx (20)
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parallel to the axis of the cylinder. As the system is an insulator, the charge that ”flows” along the cylin-

der cannot be understood in the semiclassical way as a motion of delocalized wavepackets throughout the

entire sample. Instead, it should be understood quantum mechanically as a displacement of the center of

wavefunctions within each unit cell, but a detailed discussion is not attempted here (c.f. Thouless pump).

Let it suffice to say that the charge is moved from the −y edge of the cylinder to the +y edge, if σxy

is finite. Being a bulk insulator, the bulk of the cylinder does not have any place to put the charges; this

means, there must be a gapless region at the edge that allows us to store the ’pumped’ charge in unoccupied

states. This is Laughlin’s argument that there must be gapless edge states at the boundary of an insulator

with nonzero Hall conductivity.

Let us further understand the logic for why the Hall conductivity must be quantized by calculating the

pumped charge in the time interval [0, T ], where the flux is increased from 0 to ϕ0 = h/e, the flux quantum:

Qpumped =

∫ T

0

Iydt =

∫ T

0

Lxjydt =

∫ T

0

Lx

(
−dΦflux

dt
· 1

Lx

)
σyxdt = σxy

∫ ϕ0

0

dΦflux =
h

e
σxy (21)

But the charge Qpumped must be an integer multiple of e, the fundamental charge, so that

σxy =
e2

h
ν (22)

with an integer ν. This means that the Hall conductivity of an insulator in 2D must be quantized (or zero)

at low temperatures. It is reasonable that the smallest pumping cycle, ϕ0, transfers exactly one electron

between the sides of the cylinder per edge mode (per available state at the edge), so that ν is also the number

of edge modes.

To justify this conclusion, a quantum mechanical argument is important: the insertion of a flux ϕ0 into

the center of the cylinder will return the quantum system into an eigenstate, as in the Aharonov-Bohm effect

– although, this is not the ground state if charges have been pumped between the sides of the cylinder. As

eigenstates are discretely spaced in energy, the amount of charge is also discrete and the Hall conductivity

becomes quantized.

Note: In principle, there is another, equivalent way to discuss the Laughlin argument in terms of a (flat)

annular disk, i.e., a Hall device in Corbino geometry.
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5.7 Fermi arcs on the surface of Weyl semimetals

Let these be located at ±kWz on the kz axis. As we are dealing with (semi-) metallic materials here, it

is important to realize that surface states are well defined only in regions of the two-dimensional surface

Brillouin zone, where there is no corresponding bulk density of states. If there is, surface and bulk states

merge into each other. Hence, we consider the notion of a k-dependent band gap, i.e. a band gap which

vanishes at the Weyl points but is nonzero everywhere else (in this simplified band structure).

Slicing the Brillouin zone into two-dimensional (infinite) slabs with kWz = const., we see that each slab

with −kWz < kz,slab < kWz is exposed to a quantized flux of Berry curvature, corresponding to the Chern

number ν of the 2D slab. As there are only two Weyl points, each slab with ν = 1 supports one chiral surface

mode on its edge in real space, when transitioning from (spatially) infinite to finite slabs.

Consider the ’top’ and ’bottom’ surfaces where y = const. and the surface Brillouin zones are spanned by

kx, kz. Each of these surface Brillouin zones may be cut into one-dimensional slices corresponding to the 2D

slabs introduced in the previous paragraph. For each 1D slice, the Fermi surface is a point with E = +ℏvk

on the upper, and E = −ℏvk on the lower surface, due to the chiral nature of the surface modes on 2D slabs.

Reassembling the 2D surface Brillouin zone from 1D slices, we are left with a line of surface Fermi points

spanning from one Weyl point to the other, yielding the Fermi arc. Key points here are that

• The surface Fermi ring is essentially cut in half, with the top surface hosting one half, and the bottom

surface hosting the other; a consequence of the chiral nature of surface modes driven by the Chern

number on each slab.

• Fermi arcs appear only on surfaces where ’paired’ Weyl points, i.e. Weyl points connected by a Fermi

arc, do not project onto the same point on the surface Brillouin zone.

• At the Weyl points, the surface modes merge with the bulk states (as projected onto the surface) and

electrons can transition from surface to bulk.

• While the presence of Fermi arcs is dictated by topology, their precise shape on the surface Brillouin

zone, and even their connectivity in cases with more than two Weyl points, depends on details of the
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Hamiltonian.

5.8 Appendix: Conductance of a one-dimensional channel

Consider a 1D channel as a constricted piece of semiconductor connected to two reservoirs (left and right) with

chemical potential µ1 and µ2, respectively. The positive x-direction is from left to right. The Fermi surface of

the 1D channel consists of two points with k = ±kF (at zero temperature). If we assume a simple quadratic

band dispersion ε ∼ ℏ2k2x/(2m), it is easy to see that +kF corresponds to a right-mover (v = ℏ−1∂E/∂kx > 0

and −kF to a left-mover. At low T , scattering between these two points requires a large momentum transfer,

which cannot be supplied by the low-lying excitations in the system (e.g. phonons). Therefore, the right-

and left-movers are essentially decoupled systems, which may maintain different chemical potentials ’without

speaking to each other’.

Suppose a particle enters the constricted channel from reservoir 1. Because there is no scattering, it

will maintain its chemical potential at µ1 until hitting the boundary to reservoir 2, where it suddenly drops

to lower energy - through dissipative processes such as scattering, which we do not discuss in detail here.

Likewise, a particle entering the channel from reservoir 2 will stay at chemical potential µ2 until reaching

the boundary to reservoir 1. This is referred to as ballistic motion in constricted channel. In other words,

the transport in the channel is dissipationless.

We calculate the total current through the channel as a sum of left- and right-movers. For right-movers,

IR = jR = q

∫ ∞

−∞
dEg1D(E)fFD(E) · vx (23)

The current is the product of the particle’s charge, the number of occupied states, and the mean velocity.

fFD is the Fermi-Dirac distribution function and the density of states for a one-dimensional channel with
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the above-mentioned quadratic dispersion, as well as the velocity give the current

g1D =
1

4π

(
2m

ℏ2

)1/2

E−1/2 (24)

vx =

(
2E

m

)1/2

(25)

IR =
q

2πℏ

∫ ∞

−∞
dEfFD(E) (26)

Summing up right and left moving currents,

Itot = IR − IL =
q

h

∫ ∞

−∞
dE [fFD(E − µ1)− fFD(E − µ2)] =

q

h
· (µ1 − µ2) (27)

where the difference of potential energy between the two reservoirs is q∆A0 = (µ1 − µ2). Therefore, the 1D

resistance is R1D = ∆A0/I = h/q2 for a single 1D channel.

In the case of the quantum Hall effect, the chiral edge mode does not allow ’right-movers’ and ’left-movers’

on the same edge; instead, the two species are separated on different edges, making it even harder to scatter

between the two types – not only a large momentum change, but even a change of the spatial position of

the wavefunction across the sample would be necessary to transition from −kF to +kF. The quantization

of the one-dimensional semiconductor channel, realized in a device, was indeed observed later than the

quantum Hall effect itself, and exclusively at ultra-low temperatures where scattering is suppressed. It can

be argued – although this depends sensitively on system parameters – that quantization of the Hall effect

in the two-dimensional electron gas is more ’robust’ than quantization of a one-dimensional semiconducting

channel.

Note: As compared to the simple 1D channel, the edge channel of the Quantum Hall system forms a

loop. The reason why, unlike for the 1D channel, no charge is transported through the chiral edge between

the reservoirs (σxx = 0) while the Hall conductivity σxy is quantized can be argued on this basis using the

Landauer-Buettiker formalism of circuitry (not treated here).
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