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Recap: Low-energy Hamiltonian of Weyl semimetal

The low-energy Hamiltonian of a Weyl semimetal, as discussed in the last lecture, is a direct sum of individual

Weyl points

Htot =
⊕
i

Hi(k) (1)

Hi(k) = ℏ
∑
µ

wµ(kµ − k(0,i)µ ) + ℏ
∑
µν

(kµ − k(0,i)µ )Aµντν (2)

where wµ is the tilt vector, k(0,i) is the ’position’ of the Weyl i node in momentum space, Aµν is the velocity

matrix, and τν are (pseudospin) Pauli matrices.

We choose the simplest case, wµ = 0 and Aµν = diag(v, v, v), i.e., the band dispersion is isotropic. The

simplified Hamiltonian is

Hi(k) = ℏv(k− k(0)) · τττ (3)
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It may be diagonalized to give the energy dispersion

E(k) = ± |R(k)| = ±ℏ |v|
∣∣∣k− k(0,i)

∣∣∣ (4)

and R(k) = ℏv(k−k(0)) was defined in analogy to previous sections on Berry curvature in two-level systems.

4.3 Berry curvature of a Weyl point

We consider a single subspace Hi(k) = R(k) · τττ while omitting the index i. In a previous section, we have

calculated the Berry curvature ΩΩΩ(R) = ±R/(2R3) in R-space. A coordinate transformation to k-space must

be carried out carefully, viz.

A(k) = −i ⟨n| ∇k |n⟩ = −i ⟨n| ∂R
∂k

∇R |n⟩ = (ℏv)A(R) (5)

ΩΩΩ(k) = ∇k ×A(k) =
∂R

∂k
∇R × (ℏv)A(R) = (ℏv)2ΩΩΩ(R) (6)

Hence, the Berry curvature in momentum space is

ΩΩΩ(k) = ± k− k(0,i)

2
∣∣k− k(0,i)

∣∣3 (7)

4.3.1 Comment on the sign of the Berry curvature of a Weyl point (WP)

When we consider a 2D cut of the Fermi surface at a fixed energy, we can say that the pseudospin, written in

terms of eigenfunction spinors such as (1, 0), ’winds around’ the WP while pointing radially inward (towards

the WP) or outward (away from the WP).

When we change the Fermi energy from hole-like to electron-like, the in/out direction of this pseudospin

is reversed. In fact, the sign of the emergent magnetic field is also reversed, but because the sign of the

charge is also flipped (hole-like vs. electron-like), the effective Lorentz force in momentum space retains the

same sign.

For a unique definition, we now always define the sign of the Berry curvature for Fermi energy above

the Weyl point (E > 0). In this case, the sign of v — or in the more general anisotropic case, the sign of

det(Aµν) — control the sign of the Berry curvature, ± in Eq. (7).
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4.3.2 Chirality of a Weyl point

As noted above, the emergent magnetic field in momentum space is a series of point charges. The chirality

of a Weyl point (or topological charge) may be evaluated over a spherical surface like

χ =

∫
S

d2h

2π
Ω(k) · n̂(k) = ±

∫
S

d2h

2π

h

2h3
· ĥ = ±1 (8)

where h = k− k(0) represents a coordinate shift.

This is the topological invariant associated with the presence of the Weyl point, and cannot be changed

in a continuous process (without mutual annihilation of Weyl points). It can be shown that Berry curvature

is strictly zero when time reversal and inversion symmetry are enforced simultaneously. Therefore, Weyl

points can appear in real materials only if either time or inversion symmetry are broken, or both.

4.3.3 Nielsen-Ninomiya theorem

The low-energy mdel used so far can be extended to a lattice model (tight binding model) in principle. In

the lattice model, there can be no net flux through the boundary of the Brillouin zone, due to the periodicity

of functions such as Ω(k) in momentum space.

When extending the surface integral to the boundary of the Brillouin zone, χ = 0 is thus enforced. This

implies, by extension, that Weyl points occur in pairs of opposite chirality in the Brillouin zone.

4.4 Landau quantization of Weyl fermions in a magnetic field

Let us consider the effect of a magnetic field on the Weyl Hamiltonian

p = ℏk → ΠΠΠ = −iℏ∇− qA (9)

H = v(−iℏ∇− qA) · τττ (10)

where A = (0, Bx, 0)T is the electromagnetic vector potential in our chosen gauge, giving uniform B with

B ∥ ẑ. The commutators for the canoncical momentum can be derived explicitly by using [∂x, x] = 1 and

[Πx,Πy] = iℏqB (11)
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Raising and lowering operators may be derived from these via

a =
lB

ℏ
√
2
(Πx + isΠy) (12)

a† =
lB

ℏ
√
2
(Πx − isΠy) (13)

and lB =
√
ℏ/(qB) is the magnetic length and s = sgn(qB). This definition enforces

[a, a†] =
l2B
2ℏ2

([−Πx, isΠy] + [isΠy,Πx]) =
1

2ℏ |qB|
(−i · i)ℏqB · 2s = +1 (14)

as required for the bosonic commutators (we will proceed with bosonic quantization in a harmonic oscillator

scheme).

The Hamiltonian reads in second quantization

H = v

 Πz Πx − iΠy

Πx + iΠy −Πz

 → v

 ℏkz ℏ
√
2

lB
a

ℏ
√
2

lB
a† −ℏkz

 (15)

where the second step is correct for s < 0 — suitable for B > 0, q = −e for electrons, where e > 0 is

the fundamental charge. It also requires assuming plane-wave behavior along the z-axis, i.e. separating the

wavefunction into

ψm(r) = exp(ikzz)

u
(m)
1 (x, y)

u
(m)
2 (x, y)

 (16)

with harmonic oscillator eigenfunctions obeying

au
(m)
i =

√
mu

(m−1)
i (17)

a†u
(m)
i =

√
m+ 1u

(m+1)
i (18)

for i = 1, 2.

How to diagonalize this 2×2 matrix? First write out Schroedinger’s equation explicitly, while introducing

pz = ℏkz and β = ℏ
√
2

lB
:

pzu
(m)
1 + βau

(m)
2 =

E

v
u
(m)
1 (19)

βa†u
(m)
1 − pzu

(m)
2 =

E

v
u
(m)
2 (20)
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This means we require a relation like

u
(m)
1 = Amu

(m−1)
2 (21)

with a scaling factor Am. In particular, this implies u
(0)
1 = 0, because anyway a u

(0)
2 = 0 must be valid.

Solution for m ̸= 0: We may write

Hψ = v

 pz βa

βa† −pz


Amu

(m−1)
2

u
(m)
2

 = Em

Amu
(m−1)
2

u
(m)
2

 (22)

which gives two equations

Am

(
Em

v
− pz

)
= β

√
m (23)

Am

(
β
√
m
)
=
Em

v
+ pz (24)

which, after eliminating Am, results in the two solutions

Em = ±ℏ |v|
(
2m

l2B
+ k2z

)1/2

(25)

Solution for m = 0: Let us consider the case of m = 0 where ψ0 = exp(ikzz)(0, u
(0)
2 )T and

Hψ = v

 pz βa

βa† −pz


 0

u
(0)
2

 = E0

 0

u
(0)
2

 (26)

which results in a single equation 0− vpzu
(0)
2 = E0u

(0)
2 with a single ground state energy

E0 = −ℏvkz, (27)

where the sign of the velocity v (and hence, the chirality of the Weyl point) directly enters the expression

for the energy dispersion.

Discussion: The quantum limit is obtained when only the m = 0 Landau level is occupied (note that the

degeneracy of Landau levels increases with field). In the quantum limit, the direction of motion of electrons

is coupled to the chirality of their Weyl subspace χ = B ·v/(|B| · |v|), because the m = 0 Landau level has a

linear dispersion and acts, effectively, like a one-dimensional transport channel. Hence, it is said that Weyl

fermions have a chiral m = 0 Landau level.
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Comaprison to the case of quadratic bands: e.g. in GaAs or Si, we have

E =

(
m+

1

2

)
ℏωc +

ℏ2k2z
2m∗ (28)

with ωc = qB/m∗. In the case of a quadratic band and for the linear band with m > 0, the dispersion is

independent of kx, ky because of confinement of motion to Landau tubes. In the lowest Landau level of the

linear band (m = 0), however, the behavior is akin to the quantum oscillations of a point-like Fermi surface:

The Landau tube picture loses its meaning and the transport properties are those of an effective 1D wire.

4.5 Chiral anomaly of Weyl electrons

In the quantum limit, right- or left-moving electrons have to cross a large distance in momentum space

to reverse their momentum in a scattering process. We assign an inter-valley relaxation lifetime τb to this

process, which is large so that the m = 0 Landau level becomes a very good conductor.

Consider the kinetic equation

ℏk̇ = q(E+ v ×B) (29)

and integrate to obtain the corresponding shift of the Fermi surface in steady state

∆kz =
q

ℏ
Ezτb (30)

We want to calculate the the current density j = I/Az = Ncv/Az where I is the charge current, Az is the

sample cross-section perpendicular to the applied magnetic field B ∥ ẑ, Nc is the number of carriers involved

in the process, Ez is the component of the electric field applied parallel to the z-axis, and q is the charge of

particles involved.

To estimate Nc = D · g1D(E) ·∆E where

D =
Φ

ϕ0
=
BAz

h/q
(31)

g1D(E) =
1

2π

1

ℏv
(32)

∆E = ℏv∆kz = ℏv
q

ℏ
Ezτb (33)
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are the degeneracy of Landau levels, the density of states of a 1D electron gas with dispersion E = ℏvk, and

∆E is the energy shift due to the electric field. Taken together,

j =
v

Az

1

2πℏv
(ℏv)

( q
ℏ
Ezτb

) BAz

h/q
=

vq2τb
4π2ℏ2

(E ·B) (34)

i.e. the conductivity is strongly dependent on the angle between electric field and the external magnetic field,

with a strong enhancement when the two are coaligned and current can flow along the quasi one-dimensional

channel provided by the m = 0 Landau level.

The E · B law for electronic transport due to Weyl fermions may also be derived, in the limit of low

magnetic field, from Berry curvature considerations using semiclassical transport theory: Son & Spivak,

Phys. Rev. B 88, 104412 (2013).
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