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We continue the discussion of Dirac’s magnetic monopole.

Our motivation is:

1. Application of gauge transformation to a physical problem

2. Quantization of a physical quantity, here the electric charge of an electron or the magnetic monopole

charge of a magnetic monopole, due to single-valued nature of the wavefunction

3. Example of a topological charge without introducing the emergent magnetic field / Berry phase for-

malism; here we can use entirely the (well-known) electromagnetic fields.

Recap from the previous lecture:

Consider the enhanced symmetry that would be introduced to Maxwell’s classical electrodynamics by the

presence of a new elementary particle, the magnetic monopole or magnetic charge density ρm in vacuum

∇ ·B = ρm

∇×E = −∂B
∂t

− jm

∇ ·E = ρe/ε0

∇×B =
1

c2
∂E

∂t
+ µ0je

(1)

where c = 1/
√
µ0ε0, µ0, and ε0 are the speed of light, the magnetic permeability of vacuum, and the electric

permittivity of vacuum, respectively. We also have the continuity equations for the charges, ∂ρe/∂t+∇·je = 0

and ∂ρm/∂t+∇ · jm = 0.

The modified Lorentz force:

The currents je and jm are the electric and magnetic current densities. A modified Lorentz force can be

derived as

F = qe (E+ v ×B) +
qm
µ0

(
B− 1

c2
v ×E

)
, (2)

where the symmetry of the dependence on q = qe and qm is quite apparent. The magnetic charge is measured

in Webers, [Wb] = kgm2/As2.
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2.4.1 Vector potential for motion in field of magnetic monopole

Contrary to the familiar case of classical electrodynamics, ∇ ·B = 0 is now violated due to the presence of

magnetic monopoles. While the electromagnetic vector potential A is still related to the observable magnetic

field as B = ∇×A, the mathematical identity ∇ · (∇×A) = 0 breaks down at singular locations xi, i.e. at

the locations of the monopoles.

Purpose / summary : We are interested in the stationary behavior of a QM particle on the two-dimensional

surface of a sphere of radius R around a magnetic monopole. We show that the point-like singularity of

B at the center of the sphere requires that no unique function A(x) can be defined on the entire spherical

surface; instead, we must define A in at least two separate, but overlapping patches. Drawing an analogy

to the previous section: even if the QM particle does not have any probability density at the location of the

monopole, its quantum-phase properties are affected by the monopole through geometrical constraints on

the vector potential A.

First, we choose an ansatz for the magnetic field of a monopole in analogy to the electric field of a point

charge,

B =
qm
4πr2

r

r
(3)

where r/r = êr in spherical coordinates. This gives, according to Gauss’ theorem with a spherical surface S

of radius R surrounding the point charge,

∫
S
dr2 B · n̂ = qm (4)

A possible ansatz for the vector potential is

AN(x) =
qm
4π

1− cos θ

r sin θ
êφ (5)

which is tangential to the spherical surface and diverges at θ = π. In spherical coordinates (r, θ, φ), the curl

operation is

∇×A =
1

r sin θ

(
∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ

)
êr +

1

r

(
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

)
êθ +

1

r

(
∂

∂r
(rAθ)−

∂Ar

∂θ

)
êφ (6)
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But our expression only includes Aφ and rAφ is independent of r, so that

4π

qm
∇×AN =

1

r sin θ

∂

∂θ

(
1− cos θ

r

)
êr =

1

r2
êr (7)

as expected for the monopole field. At the south pole θ = π however, the vector potential breaks down and

the magnetic field cannot be well defined from AN (although B does not diverge on the spherical surface at

radius R). Likewise, it is possible to define a south-pole potential

AS(x) =
qm
4π

(
−1− cos θ

r sin θ

)
êφ (8)

which diverges at the north pole, i.e., at θ = 0.

These two vector potentials result in the same magnetic field B, so they must be connected by a gauge

transformation

AN −AS =
qm
2π

1

r sin θ
êφ

!
= ∇Λ(x) (9)

with Λ = (qm/2π)φ and φ is the scalar spherical coordinate related to êφ. It can be confirmed that

∇Λ(x) = êr
∂Λ

∂r
+ êθ

1

r

∂Λ

∂θ
+ êφ

1

r sin θ

∂Λ

∂φ
=
qm
2π

· 1

r sin θ
(10)

There is thus no single vector potential that is non-divergent everywhere on the sphere around the monopole.

However, we can ’cover the sphere in patches’.

The situation is quite different from an electric monopole, which has a well-defined scalar potential A0,

despite the apparent ’symmetry’ of the modified Maxwell equations.

2.4.2 Quantization of electric and magnetic charges

Say that ψ corresponds to a solution of the static Schroedinger equation for a particle with electric charge

q under the influence of the magnetic monopole of charge qm:

Hψ = Eψ → 1

2m
(−iℏ∇− qA)

2
ψ = Eψ (11)

We use AN at 0 ≤ θ ≤ π − ε and AS for ε ≤ θ ≤ π with a finite ε > 0. In the overlap region, either one of

them is suitable. According to the gauge transformation between the vector potentials, discussed above, the
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wavefunctions transform as

ψ → exp [iqΛ(x)/ℏ]ψ (12)

so that the wavefunctions in the two patches are related by

ψN = exp

[
+
iq

ℏ

(qm
2π

)
ϕ

]
ψS (13)

Considering a loop around the equator, we demand that the wavefunction must return onto itself at ∆φ =

2πN0, where N0 ∈ Z (in a later section we derive the same result for bosonic wavefunctions without making

this assumption). Hence,

q

ℏ
qm
2π

!
= N0

→ qmq = hN0
(14)

and the product of the two charges is quantized. We note that, for the product to be quantized, neither

q = qe nor qm can take on continuous values.

Comment 1 : The quantization of the electric and magnetic charges also implies the quantization of

magnetic flux. The total magnetic flux through the surface of our sphere (radius R) is

∫
d2rB · n̂ =

∫
d3r∇ ·B = qm =

hN0

q
=
h

q
N0 = ϕ0N0 (15)

where ϕ0 is the flux quantum for a single particle (not superconducting flux quantum). The first equality

arises from the divergence theorem, and the second equality to the modified Maxwell equations.

Comment 2 : If there is no magnetic monopole charge, qm = 0, then AS = AN and the argument breaks

down. We need the monopole at the center to use the argument about the gauge transformation.

3 Berry phase and Berry curvature (nondegenerate case)

3.1 Definition of the Berry curvature

We consider a parameter space R(t), where t is an intrinsic parameter which allows us to traverse a path

in the parameter space. For the purpose of the present discussion, R is a position in a three-dimensional
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vector space. For parameter-dependent Hamiltonian Ĥ(R(t)), eigenstates |n(R(t))⟩, and energy spectrum

En(R(t)), we search solutions to the time-dependent S.-Eq.,

iℏ∂t |ψn[R(t)]⟩ = Ĥ[R(t)] |ψn[R(t))]⟩ , (16)

while traversing a path inR space ’sufficiently slow’ so as to ensure that a system which starts in an eigenstate

|n⟩ at time t = 0 remains in the corresponding eigenstate at t > 0. According to the adiabatic theorem,

there is a threshold speed for traversing any parameter path, below which this condition is met.

The full expression for the wavefunction is

|ψ(R)⟩ = exp (iγn(t)) exp

(
− i

ℏ

∫ t

0

dt′En [R(t′)]

)
|n [R(t)]⟩ (17)

where |n [R(t)]⟩ satisfies the time-independent Schroedinger equation,

Ĥ[R(t)] |n [R(t)]⟩ = En |n [R(t)]⟩ (18)

Besides the dynamical phase factor, an additional phase term γn is necessary to fulfill the S.-Eq. as we will

show in the following. This phase is called geometrical phase or Berry phase.

From here, we abbreviate R(t) ≡ R and have

iℏ∂t |ψ(R)⟩ = eiγn(t)e−
i
ℏ
∫ t
0
dt′En[R(t′)]iℏ

[
i
∂γn
∂t

− i

ℏ
En [R] +

∂

∂t

]
|n(R)⟩

= eiγn(t)e−
i
ℏ
∫ t
0
dt′En[R(t′)] Ĥ(R) |n(R)⟩ (19)

Now to simplify, we remove the dynamical phase factor and multiply this equation by ⟨n(R)| from the

left-hand side, yielding

∂γn
∂t

= i ⟨n(R)| ∂
∂t

|n(R)⟩ = i ⟨n(R)| ∂

∂R
|n(R)⟩ · ∂R

∂t
(20)

and we can define the shorthand for the parameter-space velocity Ṙ = ∂R/∂t (sufficiently slow to satisfy the

adiabatic condition). Note that the bra/ket expression is a contraction of wavefunctions in Hilbert space,

but also a 3-vector in the parameter space of R.
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As will be shown below, the expression for γn is not gauge-invariant in the general case; however, when

considering a closed loop C in R-space, a physically meaningful quantity is obtained:

γn[C] =
∫ T

0

∂γn
∂t

dt = i

∫ T

0

dt ⟨n(R)| ∂

∂R
|n(R)⟩ · Ṙ = i

∮
C
dlR · ⟨n(R)| ∂

∂R
|n(R)⟩

≡ −
∮
C
dlR ·An(R) (21)

where the Berry vector potential, Berry connection, or emergent vector potential was introduced:

An = −i ⟨n(R)| ∂

∂R
|n(R)⟩ (22)

This is a vector in the R-space. Further in the 3D case, the Berry curvature or emergent magnetic field is

defined as Ωn(R) = ∇R ×An so that

γn = −
∫
d2RΩn(R) · n̂R (23)

where n̂R is a normal vector on the surface of integration in R space.

3.2 Berry curvature (not Berry phase) is gauge invariant

Consider a gauge transformation of the eigenstates

|n(R)⟩ → exp(iΛ(R)) |n(R)⟩ (24)

The associated change of the Berry connection is

A′
n = −i ⟨n(R)| e−iΛ ∂

∂R
eiΛ |n(R)⟩

= −i ⟨n| ∂

∂R
|n⟩ − i ⟨n| i ∂Λ

∂R
|n⟩ = An +

∂Λ

∂R
(25)

i.e. mathematically equivalent to a gauge transformation of the electromagnetic field with a spatially depen-

dent scalar function Λ(x). The Berry curvature Ωn remains gauge invariant.

Gauge transformation and Berry phase:

We further illustrate how the Berry phase is gauge invariant only modulo 2π (in contrast to Ωn, a locally

gauge invariant object). As deduced above, we have γn = −
∮
C dlR ·An(R). Under gauge transformation,
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γ′n = γn −
∮
C dlR · (∇RΛ) and Λ(t = T )−Λ(t = 0) = 2πN where N ∈ Z is required to ensure that the wave

function is single-valued at a fixed point in R-space.

3.3 Gauge transformation and singularities in parameter space

Unlike the case of a ’real’ magnetic field, there can be sinks and sources (monopoles) of Ωn(r):

∇R ·Ωn(R) ̸= 0 (26)

due to emergent monopoles in parameters space. In this case, no single vector potential An(R) exists which

could satisfy ∇R × An(R) = Ωn(R) everywhere in parameter space, without becoming singular at some

points.

Comment 1 : Stokes’ theorem for An(R),

∮
C
dlR ·An(R) =

∫
S(C)

d2R (∇R ×An(R)) · n̂R (27)

is only valid if the loop and surface are in a region of R-space where Ωn(R) = ∇R × An(R) has no

singularities.

Comment 2: ”Moving S(C) across a monopole”; we start with a loop C and the narrow surface (neck)

S1(C) that is the tightest surface surrounded by the loop. Let a monopole be situated above this surface.

We let the surface expand upwards; then we let the surface ”catch” the monopole and finally envelop the

monopole.

Recall the previous problem of an electron in the environment of a magnetic monopole, with two vector

potentials AS and AN. In this language, we can use AS for S1(C), but should use AN for S2(C); this is

because the former surface is located entirely below the monopole, and the latter surface does not include

the south pole.

In summary: When calculating the Berry phase, the correct gauge for the vector potential depends on

the surface of integration. What is more, the gauge transformation for going from AS to AN changes γn(C)
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by 2πN , with N ∈ Z. The gauge degree of freedom corresponds to a choice of surface of integration in the

Berry phase formula.

Comment:

1. The emergent magnetic field Ωn(R) is a local quantity, whereas γn is only properly defined on a loop.

2. Ωn(R) is gauge invariant and physically observable, whereas γn is affected by a gauge transformation

and not directly observable (only modulo 2π).
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